JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **37**, No. 4, November 2024 http://dx.doi.org/10.14403/jcms.2024.37.4.167

A NOTION OF EQUIVALENCE FOR STURM-LIOUVILLE OPERATORS

Abdon Ebang Ella* and Un Cig Ji**

ABSTRACT. In this paper we introduce a notion of equivalence for Sturm Liouville operators in the sense of Pearson equation. As a main result, we prove that a given Sturm Liouville operator and a real-valued polynomial of degree at least one of this Sturm Liouville operator have the same Pearson equation.

1. Introduction

Throughout this paper, we use the standard notation $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. For each $n \in \mathbb{N}_0$, \mathcal{P}_n denotes the class of all algebraic polynomials of degree exactly n. The set of all probability distributions on \mathbb{R} with finite moments of all orders is denoted by $\operatorname{Prob}_{\infty}(\mathbb{R})$, i.e., for all $\mu \in \operatorname{Prob}_{\infty}(\mathbb{R})$, we have

$$\mu_k := \int_{\mathbb{R}} x^k \mu(dx) < \infty, \quad \forall k \in \mathbb{N}_0.$$

Let X be a real-valued random variable with the probability distribution $\mu := \mu_X \in \operatorname{Prob}_{\infty}(\mathbb{R})$. It is known from [4, 13] that there exists an orthogonal system $(\Phi_n)_{n \in \mathbb{N}_0}$ of monic orthogonal polynomials in $L^2(\mathbb{R}, \mu)$, with $\Phi_0 = 1$, associated with Jacobi sequences $(\omega_n)_{n \in \mathbb{N}} \subseteq (0, \infty)$ and $(\alpha_n)_{n \in \mathbb{N}_0} \subseteq \mathbb{R}$, such that

$$(x - \alpha_n)\Phi_n(x) = \Phi_{n+1}(x) + \omega_n \Phi_{n-1}(x), \quad \forall n \in \mathbb{N}_0$$

with convention $\omega_0 \Phi_{-1} = 0$, and

$$\langle \Phi_m, \Phi_n \rangle_{L^2(\mathbb{R},\mu)} := \int_{\mathbb{R}} \overline{\Phi_m(x)} \Phi_n(x) \mu(dx) = \omega_1 \cdots \omega_n \delta_{mn}, \ \forall (m,n) \in \mathbb{N}_0^2,$$

Received October 18, 2024; Accepted November 30, 2024.

2020 Mathematics Subject Classification: Primary 34B24; Secondary 47E05.

Key words and phrases: orthogonal polynomial, Sturm-Liouville operator, Pearson equation.

^{**}This paper was supported by a Basic Science Research Program through the NRF funded by the MEST (NRF-2022R1F1A1067601).

where δ_{mn} is the Kronecker delta. Denote by Γ_X^0 the subspace of $L^2(\mathbb{R},\mu)$ spanned by monic orthogonal polynomials $(\Phi_n)_{n\in\mathbb{N}_0}$. Krall [9] proved that, on the orthogonal gradation

(1.1)
$$\Gamma_X^0 \equiv \bigoplus_{n \in \mathbb{N}_0} \mathcal{P}_n = \bigoplus_{n \in \mathbb{N}_0} \mathbb{C} \cdot \Phi_n$$

and under certain conditions on $\mu \in \operatorname{Prob}_{\infty}(\mathbb{R})$ and its associated moments $(\mu_n)_{n \in \mathbb{N}_0}$, it is possible to construct a differential operator L_N of order N such that

(1.2)
$$L_N \Phi_n = \lambda_n \Phi_n, \quad \forall n \in \mathbb{N}_0,$$

where $(\lambda_n)_{n \in \mathbb{N}_0}$ are eigenvalues. Recently, the differential operator L_N has been studied within the quantum language by Accardi *et al.* [2], Dutta *et al.* [5] and Ji [7] following the bridge established by Accardi and Bożejko [1] between orthogonal polynomial theory and the notion of one-mode interacting Fock space, which becomes a fundamental tool in the study of quantum theory.

The aim of this paper is to study the differential operator L_N in the quantum sense started in [2, 5, 7] (see also references therein). Section 2 provides an overview of Sturm-Liouville operators. In Section 3, an equivalence notion on the class of Sturm Louiville operators, namely, equivalence in the sense of Pearson equation is introduced. As a main result in this paper, we prove that a Sturm-Liouville operator L_N and $P(L_N)$, where P has degree at least one, are equivalent in the sense of Pearson equation (see Theorem 3.3).

The notion of equivalence can be applied to the problem exhibited in [2] and relative to the characterization of real-valued random variable of finite type.

2. Sturm Liouville operator

In this paper, unless otherwise specified, all probability distributions are elements of $\operatorname{Prob}_{\infty}(\mathbb{R})$ and having a probability density function f_X .

2.1. Differential operator of finite order

In [12], Stan *et al.* have introduced the notion of faithfulness for a gradation in the multi–dimensional case (see Definition 4.2 in [12]). In our context, we will restrict their approach to one dimensional case and orthogonal gradation (1.1).

DEFINITION 2.1. Let $k \in \mathbb{Z}$ be a fixed integer. A linear operator T acting on Γ_X^0 is said to be k-faithful to the gradation $(\mathcal{P}_n)_{n \in \mathbb{N}_0}$ if, for every $n \in \mathbb{N}_0$,

$$T\mathcal{P}_n \subseteq \mathcal{P}_{n+k},$$

with the convention that $\mathcal{P}_m := \{0\}$ for all m < 0.

The following result, due to Stan *et al.* [12], plays a fundamental role in the representation of operator L_N , described as in (1.2), in terms of differential operators with polynomial coefficients (see [2]).

THEOREM 2.2 (Theorem 4.3 in [12]). If a linear operator T, acting on Γ^0_X , is k-faithful then there exists a unique sequence of complex-valued polynomials $(p_n)_{n \in \mathbb{N}_0}$, with

$$\deg(p_n) \le n+k, \quad \forall n \in \mathbb{N}_0,$$

such that for all $g \in \Gamma^0_X$, we have

$$(Tg)(x) := \sum_{n \in \mathbb{N}_0} p_n(x) \partial_x^n g(x) = \sum_{n \in \mathbb{N}_0} p_n(x) g^{(n)}(x),$$

where $g^{(n)}$ denotes the *n*-th derivative of *g*. In other words, on Γ^0_X , we can write

(2.1)
$$T = \sum_{n \in \mathbb{N}_0} p_n(x) \partial_x^n.$$

Such an operator T, given as in (2.1), is called a differential operator.

The following definition was introduced by Accardi et al. in [2].

DEFINITION 2.3. A differential operator T acting on Γ^0_X is said to be of finite order if there exists an integer $N \in \mathbb{N}$ such that

(2.2)
$$T = \sum_{k=0}^{N} p_k(x) \partial_x^k \quad \text{with} \quad p_N \neq 0.$$

Such a T, described as in (2.2), is called a differential operator of order N. The algebra of all finite order differential operators acting on Γ_X^0 is denoted by $\mathcal{P}[x, \partial_x]$. In (2.2), if $N = \infty$ then T is called differential operator of infinite order and we denote by $\mathcal{P}[[x, \partial_x]]$ the algebra consisting of all differential operators of infinite order.

A. Ebang Ella and U. C. Ji

2.2. Differential representation induced by smoothness of density

In this section, we will exhibit some properties induced by differential operator ∂_x acting on Γ_X^0 .

PROPOSITION 2.4. [2, Lemma 3.4] Let f_X be a probability density function defined on (a, b). Then

$$\partial_x^* = \beta(x) - \partial_x,$$

where

(2.3)
$$\beta(x) := -(\log(f_X(x)))'$$

and ∂_x^* is interpreted as the quadratic form defined on the set of pairs of differentiable functions $\xi, \eta \in L^2(\mathbb{R}, f_X(x)dx)$ satisfying

(2.4)
$$\overline{\xi}(x)\eta(x)f_X(x)\Big|_a^b := \lim_{x\uparrow b} \overline{\xi}(x)\eta(x)f_X(x) - \lim_{x\downarrow a} \overline{\xi}(x)\eta(x)f_X(x) = 0.$$

From Proposition 2.4, it is clear that if f_X is differentiable on (a, b) such that

$$\beta(x) = -(\log(f_X(x)))' = -\frac{(f_X(x))'}{f_X(x)}$$

is a polynomial and satisfies the boundary conditions

(2.5)
$$\lim_{x \downarrow a} p(x) f_X(x) = \lim_{x \uparrow b} p(x) f_X(x) = 0,$$

then $(\partial_x)^*$ is a well-defined operator, as adjoint of ∂_x , acting on Γ^0_X . Furthermore, if $f_X \in C^{\infty}(a, b)$, then for any differential operator $T = \sum_{k=0}^N t_k(x) \partial_x^k \in \mathcal{P}[x, \partial_x]$ acting on Γ^0_X , the adjoint T^* is well-defined as differential operator in $\mathcal{P}[x, \partial_x]$ and acting on Γ^0_X .

In the rest of paper, we assume that the probability density function f_X is a C^{∞} -function on (a, b) and satisfies the boundary conditions (2.5).

2.3. Definition and some properties

In this section, we revisit the (generalized) Sturm-Liouville operator and some key results related to it discussed by Ji [7] and by Accardi *et al.* [2]. We begin by recalling the definition of a Sturm-Liouville operator.

Recall that, for any $a \in \mathbb{C}$, $(a)_j$ denotes j-th falling factorial of a defined by

$$(a)_0 := 1, \quad (a)_j := a(a-1)\cdots(a-j+1), \quad \forall j \in \mathbb{N}.$$

DEFINITION 2.5. Let X be a real-valued random variable and let f_X be its probability density function on (a, b). We denote by $(\Phi_n)_{n \in \mathbb{N}_0}$ the orthogonal system of monic orthogonal polynomials with respect to f_X . An N-th order differential operator given by

$$L_N = \sum_{k=1}^N \sigma_k(x) \partial_x^k,$$

where $\sigma_k(x) = \sum_{j=0}^k \sigma_{k,j} x^j$ is real-valued polynomial of degree at most $k \in \{1, ..., N\}$, with $\sigma_N \neq 0$, is called an *N*-th order Sturm Liouville operator associated with f_X if L_N is self-adjoint and satisfies

(2.6)
$$L_N \Phi_n = \lambda_n \Phi_n, \quad \lambda_n = \sum_{j=1}^N \sigma_{j,j}(n)_j$$

with convention that $\sum_{j=1}^{N} \sigma_{j,j}^2 \neq 0$.

The following result establishes the connection between Sturm Liouville operator, acting on Γ_X^0 , and probability density function f_X of real-valued random variable X.

THEOREM 2.6. Let X be a real-valued random variable with the probability density function f_X on (a, b). Consider an operator H acting Γ^0_X given by

$$H = \sum_{k=0}^{N} \sigma_k(x) \partial_x^k \in \mathcal{P}[x, \partial_x].$$

Then we have (2.7)

$$H^* := \sum_{k=0}^N (-1)^k \left(\frac{(f_X(x))'}{f_X(x)} + \partial_x \right)^k \sigma_k(x)$$

=
$$\sum_{k=0}^N \left(\sum_{m=k}^N (-1)^m \sum_{j_1+j_2+k=m} \frac{m!}{j_1! j_2! k!} (\sigma_m(x))^{(j_1)} \frac{(f_X(x))^{(j_2)}}{f_X(x)} \right) \partial_x^k,$$

and then $H = H^*$ (i.e., H is Hermitian) on Γ^0_X if and only if $N \in 2\mathbb{N}$ and, for all $k \in \{0, 1, ..., N\}$, it holds that

(2.8)
$$\sum_{m=k}^{N} (-1)^m \sum_{j_1+j_2+k=m} \frac{m!}{j_1! j_2! k!} (\sigma_m(x))^{(j_1)} \frac{(f_X(x))^{(j_2)}}{f_X(x)} = \sigma_k(x).$$

Proof. For the explicit proof, see [7].

In (2.8), by taking k = N - 1, we see that f_X is a solution of the following differential equation (see [5]):

(2.9)
$$N\sigma_N(x)y' + (N(\sigma_N(x))' - 2\sigma_{N-1}(x))y = 0.$$

The equation (2.9) is sometimes called a Pearson equation (of type N) associated with the Sturm Liouville operator L_N .

By solving the Pearson equation (2.9), without considering the boundary conditions (2.5), we find that the probability density function f_X associated with L_N is given by

(2.10)
$$f_X(x) = \frac{C}{\sigma_N(x)} \exp\left\{\frac{2}{N} \int^x \frac{\sigma_{N-1}(s)}{\sigma_N(s)} ds\right\}, \quad \forall x \in (a,b),$$

where C is the normalization constant.

In the following examples we list two important examples of second order Sturm Liouvile operator extensively studied by Accardi *et al.* [2].

EXAMPLE 2.7. Suppose that f_X is the probability density function of a standard Gaussian random variable X given by

(2.11)
$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad \forall x \in \mathbb{R}.$$

As shown in [2], the Sturm-Liouville operator associated with the standard Gaussian variable X and its eigenvalues $(\lambda_n)_{n \in \mathbb{N}_0}$ are given by

(2.12)
$$L_2 = x\partial_x - \partial_x^2, \quad \lambda_n = n, \quad \forall n \in \mathbb{N}_0.$$

EXAMPLE 2.8. If f_X is the probability density function of a gamma random variable X given by

(2.13)
$$f_X(x) \equiv \gamma_\alpha(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x}, \quad \alpha > 0, \ \forall x \in (0, +\infty),$$

then as shown in [2], the Sturm-Liouville operator associated with the gamma variable X and its eigenvalues $(\lambda_n)_{n \in \mathbb{N}_0}$ are given by

(2.14)
$$L_{2,\gamma_{\alpha}} = (x - \alpha)\partial_x - x\partial_x^2, \quad \lambda_n = n, \quad \forall n \in \mathbb{N}_0.$$

3. An Equivalence of Sturm Liouville operators

Let L_2 be the second order Sturm Liouville operator, given as in (2.12), associated with the standard Gaussian probability density function on \mathbb{R} . Taking the square of L_2 , we have

$$(3.1) (L_2)^2 = x (1 + x\partial_x) \partial_x - x\partial_x^3 - (2\partial_x + x\partial_x^2)\partial_x + \partial_x^4.$$

Moreover, denoting f the probability density function associated with $(L_2)^2$, we have, from (2.10), that

$$f(x) = C \exp\left\{\frac{2}{4} \int_0^x (-2s) \, ds\right\} = C e^{-\frac{x^2}{2}},$$

which is the probability density function of a standard Gaussian distribution, given as in (2.11).

This observation, along with the identity given in (2.9), motivate the following definition.

DEFINITION 3.1. Let
$$L_M = \sum_{j=1}^M \tau_j(x) \partial_x^j$$
 and $L_N = \sum_{k=1}^N \sigma_k(x) \partial_x^k$ be

two Sturm Liouville operators of orders M and N, respectively. We say that L_N and L_M are equivalent in the sense of Pearson equation (or simply, equivalent) if

$$\mathbf{P}_N = Q(x)\mathbf{P}_M$$
 or $\mathbf{P}_M = Q(x)\mathbf{P}_N$

for some non-zero real-valued polynomial Q, where

$$\mathbf{P}_N f(x) = N \sigma_N(x) f'(x) + (N \sigma_N(x)' - 2\sigma_{N-1}(x)) f(x), \mathbf{P}_M f(x) = M \tau_M(x) f'(x) + (M \tau_M(x)' - 2\tau_{M-1}(x)) f(x).$$

The following lemma generalizes the discussion mentioned at the beginning of this section.

LEMMA 3.2. Let L_N be an N-th order Sturm Liouville operator. Then, for any $m \in \mathbb{N}$, $(L_N)^m$ is equivalent to L_N .

Proof. Let $L_N = \sum_{k=1}^N \sigma_k(x) \partial_x^k$ be a *N*-th order Sturm Liouville operator. The statement is trivial for m = 1. Now, let $m \ge 2$ be an integer. By applying the Leibniz rule, we obtain that

$$(L_N)^m = \left(\sum_{k_1=0}^N \sigma_{k_1}(x)\partial_x^{k_1}\right) \cdots \left(\sum_{k_m=0}^N \sigma_{k_m}(x)\partial_x^{k_m}\right)$$

= $\sum_{k_1=0}^N \cdots \sum_{k_m=0}^N \sigma_{k_1}(x)\partial_x^{k_1}\sigma_{k_2}(x)\partial_x^{k_2}\cdots \partial_x^{k_{m-1}}\sigma_{k_m}(x)\partial_x^{k_m}$
= $\sum_{k_1=0}^N \cdots \sum_{k_m=0}^N \sum_{j_1=0}^{k_1} \cdots \sum_{j_{m-1}=0}^{k_{m-1}+\dots+k_1-j_1-\dots-j_{m-2}}$
 $\binom{k_1}{j_1} \cdots \binom{k_{m-1}+\dots+k_1-j_1-\dots-j_{m-2}}{j_{m-1}}$

A. Ebang Ella and U. C. Ji

$$\times \sigma_{k_1}(x) (\sigma_{k_2}(x))^{(j_1)} \cdots (\sigma_{k_m}(x))^{(j_{m-1})} \\ \times \partial^{k_m + k_{m-1} + \dots + k_1 - j_1 - \dots - j_{m-2} - j_{m-1}}_{m-1}.$$

from which we obtain that

• the order of $(L_N)^m$ is obtained by taking the (2m-1)-tuple

 $(k_1,...,k_m,j_1,...,j_{m-1})=(N,...,N,0,...,0),$

i.e., $(L_N)^m$ is a differential operator of order mN and $(\sigma_N)^m$ is the coefficient polynomial associated with ∂_x^{mN} . • the coefficient polynomial associated with ∂_x^{mN-1} is obtained by

taking the (2m-1)-tuples $(k_1, ..., k_m, j_1, ..., j_{m-1})$ with the values

$$(N - 1, ..., N, 0, ..., 0), \cdots, (N, ..., N - 1, 0, ..., 0),$$

 $(N, ..., N, 1, ..., 0), \cdots, (N, ..., N, 0, ..., 1).$

Therefore, the polynomial coefficient associated with ∂_x^{mN-1} is given by

$$m\sigma_{N-1}(x) (\sigma_N(x))^{m-1} + \frac{m(m-1)}{2} N (\sigma_N(x))' \sigma_N(x).$$

It follows that $(L_N)^m$ can be re–written as follows:

$$(L_N)^m = A + R(x)\partial_x^{mN-1} + (\sigma_N(x))^m \,\partial_x^{mN},$$

where A is a differential operator of order at most mN - 2 and

$$R(x) := m\sigma_{N-1}(x) (\sigma_N(x))^{m-1} + \frac{m(m-1)}{2} N (\sigma_N(x))' \sigma_N(x).$$

Therefore, by applying (2.9) and constructing the Pearson equation associated with the Sturm Liouville operator $(L_N)^m$, it follows that

$$mN (\sigma_{N}(x))^{m} y' + (mN ((\sigma_{N}(x))^{m})' - 2R(x)) y$$

= $mN (\sigma_{N}(x))^{m} y' + (mN (m (\sigma_{N}(x))' (\sigma_{N}(x))^{m-1}) - 2R(x)) y$
= $m (\sigma_{N}(x))^{m-1} (N\sigma_{N}(x)y' + (mN (\sigma_{N}(x))'))^{m-1} - 2(\sigma_{N-1}(x) + \frac{(m-1)}{2}N (\sigma_{N}(x))')) y)$
= $m (\sigma_{N}(x))^{m-1} (N\sigma_{N}(x)y' + (N (\sigma_{N}(x))' - 2\sigma_{N-1}(x)) y),$

which means that $(L_N)^m$ and L_N are equivalent.

Notice that the Lemma 3.2 can be generalized as follows

THEOREM 3.3. If L_N is an N-th order Sturm Liouville operator, then, for any real-valued polynomial P of degree $m \ge 1$, $P(L_N)$ and L_N are equivalent.

Proof. Let L_N be an N-th order Sturm Liouville operator given by

$$L_N = \sum_{k=1}^N \sigma_k(x) \partial_x^k, \quad \sigma_N(x) \neq 0,$$

where $\sigma_k(x)$ is a real-valued polynomial of degree at most $k \in \{1, ..., N\}$, and let $P(x) = \sum_{j=0}^{m} c_j x^j$ be a real-valued polynomial of degree $m \ge 1$, that is, c_m is non-zero. Then it is obvious that $P(L_N)$ is a differential operator of order mN and we have

$$P(L_N) = \sum_{k=0}^{m} c_j \left(\sum_{k=0}^{N} \sigma_k(x) \partial_x^k \right)^j$$
$$= \sum_{k=0}^{m-1} c_j \left(\sum_{k=0}^{N} \sigma_k(x) \partial_x^k \right)^j + c_m \left(\sum_{k=0}^{N} \sigma_k(x) \partial_x^k \right)^m.$$

Notice the follows:

- ∑_{k=0}^{m-1} c_j (∑_{k=0}^N σ_k(x)∂_x^k)^j is a differential operator of order at most (m − 1)N,
 c_m (∑_{k=0}^N σ_k(x)∂_x^k)^m is a differential operator of order mN (because c_m ≠ 0).

Moreover, mN - 1 > (m - 1)N (because $N \ge 2$) and the Pearson equation of order mN, associated with $P(L_N)$ is the Pearson equation associated with $c_m(L_N)^m$. By using Lemma 3.2, we can conclude $P(L_N)$ is Pearson equivalent to L_N .

Now, we may ask whether it is possible to find two equivalent Sturm Liouville operators S and T such that their corresponding probability density functions are different. The next example gives a positive answer to this question.

EXAMPLE 3.4. Let R > 0 be given. Consider the fourth order differential operator L_4 given by

(3.2)
$$L_4 = \sum_{k=1}^4 h_k(x) \partial_x^k,$$

where

(3.3)
$$h_1(x) = 2(R+1)x - 2R, \quad h_2(x) = x^2 - 2(R+3)x,$$

 $h_3(x) = -2x(x-2), \quad h_4(x) = x^2.$

It is know from Section II.2 in [11] that L_4 , given as in (3.2), is a Sturm Liouville operator associated with the so-called Laguerre-type orthogonal polynomials, with eigenvalues $(\lambda_n)_{n \in \mathbb{N}_0}$ given by

$$\lambda_n = n(n+2R+1), \quad \forall n \in \mathbb{N}_0.$$

Now, on one hand, using (2.9), the Pearson equation associated with L_4 , given as in (3.2), becomes

(3.4)
$$0 = 4x^2y' + (4(2x) + 2(2x^2 - 4x))y = 4x^2(y' + y).$$

On the other hand, consider the Sturm Liouville operator $L_2 \equiv L_{2,\gamma_1}$, given as in (2.14) (with $\alpha = 1$), associated with probability distribution γ_1 , , i.e.

(3.5)
$$L_{2,\gamma_1} = (x-1)\partial_x - x\partial_x^2$$

It follows, from (2.9), that the Pearson equation associated with L_{2,γ_1} is given by

(3.6)
$$0 = -2xy' + (2(-1) - 2(x-1))y = -2x(y+y').$$

Moreover, from (3.4) and (3.6), we have

$$4x^{2}(y'+y) = -2x(-2x(y+y')), \quad \forall x \in (0,+\infty).$$

Therefore, L_4 and L_{2,γ_1} are equivalent in the sense of the Pearson equation.

REMARK 3.5. In Example 3.4, even though the Sturm Liouville operators L_4 and L_{2,γ_1} are equivalent, we should point out that the probability density function γ_1 , associated with L_{2,γ_1} , is not associated with L_4 . In fact, if γ_1 were associated with L_4 , it would satisfy the equation

(3.7)
$$\sum_{m=k}^{4} (-1)^m \sum_{j_1+j_2+k=m} \frac{m!}{j_1! j_2! k!} (h_m(x))^{(j_1)} \frac{(\gamma_1(x))^{(j_2)}}{\gamma_1(x)} = h_k(x)$$

for all $k \in \{1, 2, 3, 4\}$, where

$$\gamma_1(x) = e^{-x}, \quad \forall x \in (0, \infty)$$

Let us try to verify (3.7) for k = 2. In fact, using the definition of $h_k(x)$ in (3.3), the left hand side of (3.7) becomes

$$\sum_{m=2}^{4} (-1)^m \sum_{j_1+j_2=m-2} \frac{m!}{j_1! j_2! 2!} (h_m(x))^{(j_1)} \frac{(\gamma_1(x))^{(j_2)}}{\gamma_1(x)}$$
$$= \sum_{m=2}^{4} (-1)^m \sum_{j_1+j_2=m-2} (-1)^{j_2} \frac{m!}{j_1! j_2! 2!} (h_m(x))^{(j_1)}$$

A notion of equivalence for Sturm-Liouville operators

$$= \sum_{j_1+j_2=0} (-1)^{j_2} \frac{2!}{j_1!j_2!2!} (h_2(x))^{(j_1)} - \sum_{j_1+j_2=1} (-1)^{j_2} \frac{3!}{j_1!j_2!2!} (h_3(x))^{(j_1)} + \sum_{j_1+j_2=2} (-1)^{j_2} \frac{4!}{j_1!j_2!2!} (h_4(x))^{(j_1)} = h_2(x) - 3 (h_3(x)' - h_3(x)) + (h_4(x) + h_4(x)'' - 12h_4(x)') = x^2 - 2(R+3)x - 3 \{2x^2 - 8x + 4\} + (x^2 + 2 - 24x) = -4x^2 - 2(R+3)x - 10,$$

which is not equal to $h_2(x)$, defined in (3.3). Therefore γ_1 is not associated with L_4 given as in (3.2). Moreover, there is no real-valued polynomial P such that $L_4 = P(L_{2,\gamma_1})$. In deed, suppose that there exists a real-valued polynomial P such $L_4 = P(L_{2,\gamma_1})$. Since L_{2,γ_1} is a second order Sturm-Liouville operator, P(x) must be of the form $P(x) = \alpha x^2 + \beta x$, where α, β are reals. By (3.5) and direct computation, for any polynomial Q(x), we have

$$(L_{2,\gamma})^2 Q(x) = (x-1)Q'(x) + (x^2 - 5x + 2)Q''(x) - 2x(x-2)Q^{(3)}(x) + x^2Q^{(4)}(x).$$

Therefore, we obtain that

(3.8)
$$P(L_{2,\gamma}) = \alpha (L_{2,\gamma})^2 + \beta (L_{2,\gamma})$$
$$= (x-1)(\alpha+\beta)\partial_x + (\alpha x^2 - (5\alpha+\beta)x + 2\alpha)\partial_x^2$$
$$- 2x\alpha(x-2)\partial_x^3 + \partial_x^4.$$

Since $P(L_{2,\gamma}) = L_4$, it follows from (3.2), (3.3) and (3.8) that

$$2(R+1)x - 2R = (x - 1)(\alpha + \beta),$$

$$x^{2} - 2(R+3)x = \alpha x^{2} - (5\alpha + \beta)x + 2\alpha,$$

$$-2x(x - 2) = -2x\alpha(x - 2),$$

$$x^{2} = \alpha x^{2},$$

which implies that $\alpha = 1$ (from the last identity) and $\alpha = 0$ (from the second identity). This is a contradiction. Therefore, it is impossible to construct a real-valued polynomial P, such that $P(L_{2,\gamma_1}) = L_4$.

REMARK 3.6. H. L. Krall proved in [9] that L_4 , given as in (3.2), is self-adjoint with respect to the probability density function f_X given by

(see Example 2.2 in [10])

(3.9)
$$f_X(x) = C\left[\frac{1}{R}\delta(x) + e^{-x}H(x)\right], \quad \forall x \in [0, +\infty),$$

where δ is the Dirac distribution (also called Dirac delta function) and H is the Heaviside function defined by

$$H(x) := \begin{cases} 1 & \text{if } x \ge 0, \\ 0 & \text{if } x < 0. \end{cases}$$

Notice that the probability density function f_X , given as in (3.9), is not differentiable in the classical sense, but it is differentiable in distribution sense.

PROPOSITION 3.7. Let L_N be an N-th order Sturm Liouville operator associated with a probability density function $f_X \in C^{\infty}(a, b)$. Then for any real-valued polynomial $P, P(L_N)$ is associated with f_X .

Proof. Since $L_N^* = L_N$ with respect to f_X , for any $m \in \mathbb{N}$, it holds that

$$[(L_N)^m]^* = [(L_N)^*]^m = (L_N)^m.$$

This implies that for any real-valued polynomial P, $P(L_N)^* = P(L_N)$. Let $(\Phi_n)_{n \in \mathbb{N}_0}$ be the orthogonal system of monic orthogonal polynomials with respect f_X satisfying the eigenvalue problem given as in (2.6). Then for any $n \in \mathbb{N}_0$, it follows from applying $P(L_N)$ to (2.6) that

$$P(L_N)\Phi_n = P(\lambda_n)\Phi_n.$$

Therefore, $P(L_N)$ is a Sturm-Liuoville operator associated with f_X . \Box

REMARK 3.8. Motivated by Proposition 3.7, some relations between two Sturm Liouville operators which are associated with same probability density function will be discussed in a separated paper.

References

- L. Accardi and M. Bożejko, Interacting Fock spaces and Gaussianization of probability measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1 (1998), 663–670.
- [2] L. Accardi, A. E. Ella, U. C. Ji and Y.-G. Lu, Quantum properties of classical Pearson random variables, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 27 (2024), no. 3, 2350028.
- [3] L. Accardi, H.-H. Kuo and A. Stan, Characterization of probability measures through the canonically associated interacting Fock spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7 (2005), 485–505.

- [4] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon & Breach, 1978.
- [5] R. Dutta, G. Popa and A. Stan, Random variables with overlapping number and Weyl algebras I, Journ. Stoch. Anal., 4 (2023), 425–455.
- [6] U. Franz and N. Privault, Probability on Real Lie Algebras, Cambridge Tracts in Mathematics, 206, Cambridge University Press, 2016.
- [7] U. C. Ji, Differential representations of CAP operators associated with quasidefinite moments functionals, Preprint, 2024.
- [8] R. Koekoek, P. A. Lesky and R. F. Swarttouw, *Hypergeometric Orthogonal Polynomials and Their q-analogues*, Springer, Berlin, 2010.
- [9] H. L. Krall, On Orthogonal Polynomials Satisfying a Certain Fourth Order Differential Equation, The Pennsylvania State College Studies, 6, The Pennsylvania State College, State College PA, 1940.
- [10] K. H. Kwon, J. K. Lee, L. L. Littlejohn and B. H. Yoo, Characterizations of classical type orthogonal polynomials, Proc. Am. Math. Soc., 120 (1994), 485– 493.
- [11] L. L. Littlejohn and A. M. Krall, Orthogonal polynomials and higher order singular Sturm-Liouville systems, Acta Applic., 17 (1989), 97–170.
- [12] A. I. Stan, G. Popa and R. Dutta, Position-momentum decomposition of linear operators defined on algebras of polynomials, J. Math. Phys., 62 (2021), 012101.
- [13] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc., Providence, RI, 1975.

Abdon Ebang Ella Department of Mathematics Chungbuk National University Cheongju 28644, Republic of Korea *E-mail*: ebangabdon6410gmail.com

Un Cig Ji Department of Mathematics Institute for Industrial and Applied Mathematics Chungbuk National University Cheongju 28644, Republic of Korea *E-mail*: uncigji@chungbuk.ac.kr