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A NOTION OF EQUIVALENCE FOR

STURM-LIOUVILLE OPERATORS

Abdon Ebang Ella* and Un Cig Ji**

Abstract. In this paper we introduce a notion of equivalence for
Sturm Liouville operators in the sense of Pearson equation. As a
main result, we prove that a given Sturm Liouville operator and a
real-valued polynomial of degree at least one of this Sturm Liouville
operator have the same Pearson equation.

1. Introduction

Throughout this paper, we use the standard notation N0 := N∪ {0}.
For each n ∈ N0, Pn denotes the class of all algebraic polynomials of
degree exactly n. The set of all probability distributions on R with
finite moments of all orders is denoted by Prob∞(R), i.e., for all µ ∈
Prob∞(R), we have

µk :=

∫
R
xkµ(dx) < ∞, ∀k ∈ N0.

LetX be a real–valued random variable with the probability distribution
µ := µX ∈ Prob∞(R). It is known from [4, 13] that there exists an or-
thogonal system (Φn)n∈N0 of monic orthogonal polynomials in L2(R, µ),
with Φ0 = 1, associated with Jacobi sequences (ωn)n∈N ⊆ (0,∞) and
(αn)n∈N0 ⊆ R, such that

(x− αn)Φn(x) = Φn+1(x) + ωnΦn−1(x), ∀n ∈ N0

with convention ω0Φ−1 = 0, and

⟨Φm,Φn⟩L2(R,µ) :=

∫
R
Φm(x)Φn(x)µ(dx) = ω1 · · ·ωnδmn, ∀(m,n) ∈ N2

0,

Received October 18, 2024; Accepted November 30, 2024.
2020 Mathematics Subject Classification: Primary 34B24; Secondary 47E05.
Key words and phrases: orthogonal polynomial, Sturm-Liouville operator, Pear-

son equation.
**This paper was supported by a Basic Science Research Program through the

NRF funded by the MEST (NRF-2022R1F1A1067601).



168 A. Ebang Ella and U. C. Ji

where δmn is the Kronecker delta. Denote by Γ0
X the subspace of

L2(R, µ) spanned by monic orthogonal polynomials (Φn)n∈N0 . Krall [9]
proved that, on the orthogonal gradation

(1.1) Γ0
X ≡

⊕
n∈N0

Pn =
⊕
n∈N0

C · Φn

and under certain conditions on µ ∈ Prob∞(R) and its associated mo-
ments (µn)n∈N0 , it is possible to construct a differential operator LN of
order N such that

(1.2) LNΦn = λnΦn, ∀n ∈ N0,

where (λn)n∈N0 are eigenvalues. Recently, the differential operator LN

has been studied within the quantum language by Accardi et al. [2],
Dutta et al. [5] and Ji [7] following the bridge established by Accardi
and Bożejko [1] between orthogonal polynomial theory and the notion
of one-mode interacting Fock space, which becomes a fundamental tool
in the study of quantum theory.

The aim of this paper is to study the differential operator LN in the
quantum sense started in [2, 5, 7] (see also references therein). Section
2 provides an overview of Sturm-Liouville operators. In Section 3, an
equivalence notion on the class of Sturm Louiville operators, namely,
equivalence in the sense of Pearson equation is introduced. As a main
result in this paper, we prove that a Sturm-Liouville operator LN and
P (LN ), where P has degree at least one, are equivalent in the sense of
Pearson equation (see Theorem 3.3).

The notion of equivalence can be applied to the problem exhibited in
[2] and relative to the characterization of real-valued random variable of
finite type.

2. Sturm Liouville operator

In this paper, unless otherwise specified, all probability distributions
are elements of Prob∞(R) and having a probability density function fX .

2.1. Differential operator of finite order

In [12], Stan et al. have introduced the notion of faithfulness for a
gradation in the multi–dimensional case (see Definition 4.2 in [12]). In
our context, we will restrict their approach to one dimensional case and
orthogonal gradation (1.1).
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Definition 2.1. Let k ∈ Z be a fixed integer. A linear operator T
acting on Γ0

X is said to be k-faithful to the gradation (Pn)n∈N0 if, for
every n ∈ N0,

TPn ⊆ Pn+k,

with the convention that Pm := {0} for all m < 0.

The following result, due to Stan et al. [12], plays a fundamental role
in the representation of operator LN , described as in (1.2), in terms of
differential operators with polynomial coefficients (see [2]).

Theorem 2.2 (Theorem 4.3 in [12]). If a linear operator T , acting on
Γ0
X , is k–faithful then there exists a unique sequence of complex-valued

polynomials (pn)n∈N0 , with

deg(pn) ≤ n+ k, ∀n ∈ N0,

such that for all g ∈ Γ0
X , we have

(Tg)(x) :=
∑
n∈N0

pn(x)∂
n
xg(x) =

∑
n∈N0

pn(x)g
(n)(x),

where g(n) denotes the n–th derivative of g. In other words, on Γ0
X , we

can write

(2.1) T =
∑
n∈N0

pn(x)∂
n
x .

Such an operator T , given as in (2.1), is called a differential operator.

The following definition was introduced by Accardi et al. in [2].

Definition 2.3. A differential operator T acting on Γ0
X is said to be

of finite order if there exists an integer N ∈ N such that

(2.2) T =

N∑
k=0

pk(x)∂
k
x with pN ̸= 0.

Such a T , described as in (2.2), is called a differential operator of order
N . The algebra of all finite order differential operators acting on Γ0

X is
denoted by P[x, ∂x]. In (2.2), if N = ∞ then T is called differential op-
erator of infinite order and we denote by P[[x, ∂x]] the algebra consisting
of all differential operators of infinite order.
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2.2. Differential representation induced by smoothness of
density

In this section, we will exhibit some properties induced by differential
operator ∂x acting on Γ0

X .

Proposition 2.4. [2, Lemma 3.4] Let fX be a probability density
function defined on (a, b). Then

∂∗
x = β(x)− ∂x,

where

(2.3) β(x) := −(log(fX(x)))′

and ∂∗
x is interpreted as the quadratic form defined on the set of pairs

of differentiable functions ξ, η ∈ L2(R, fX(x)dx) satisfying

(2.4) ξ(x)η(x)fX(x)
∣∣b
a
:= lim

x↑b
ξ(x)η(x)fX(x)− lim

x↓a
ξ(x)η(x)fX(x) = 0.

From Proposition 2.4, it is clear that if fX is differentiable on (a, b)
such that

β(x) = −(log(fX(x)))′ = −(fX(x))′

fX(x)

is a polynomial and satisfies the boundary conditions

(2.5) lim
x↓a

p(x)fX(x) = lim
x↑b

p(x)fX(x) = 0,

then (∂x)
∗ is a well-defined operator, as adjoint of ∂x, acting on Γ0

X .
Furthermore, if fX ∈ C∞(a, b), then for any differential operator T =∑N

k=0 tk(x)∂
k
x ∈ P[x, ∂x] acting on Γ0

X , the adjoint T ∗ is well-defined as
differential operator in P[x, ∂x] and acting on Γ0

X .
In the rest of paper, we assume that the probability density function

fX is a C∞-function on (a, b) and satisfies the boundary conditions (2.5).

2.3. Definition and some properties

In this section, we revisit the (generalized) Sturm-Liouville operator
and some key results related to it discussed by Ji [7] and by Accardi et al.
[2]. We begin by recalling the definition of a Sturm-Liouville operator.

Recall that, for any a ∈ C, (a)j denotes j–th falling factorial of a
defined by

(a)0 := 1, (a)j := a(a− 1) · · · (a− j + 1), ∀j ∈ N.
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Definition 2.5. Let X be a real-valued random variable and let fX
be its probability density function on (a, b). We denote by (Φn)n∈N0 the
orthogonal system of monic orthogonal polynomials with respect to fX .
An N–th order differential operator given by

LN =
N∑
k=1

σk(x)∂
k
x ,

where σk(x) =
∑k

j=0 σk,jx
j is real-valued polynomial of degree at most

k ∈ {1, ..., N}, with σN ̸= 0, is called an N–th order Sturm Liouville
operator associated with fX if LN is self-adjoint and satisfies

(2.6) LNΦn = λnΦn, λn =
N∑
j=1

σj,j(n)j ,

with convention that
∑N

j=1 σ
2
j,j ̸= 0.

The following result establishes the connection between Sturm Li-
ouville operator, acting on Γ0

X , and probability density function fX of
real-valued random variable X.

Theorem 2.6. Let X be a real-valued random variable with the
probability density function fX on (a, b). Consider an operator H acting
Γ0
X given by

H =
N∑
k=0

σk(x)∂
k
x ∈ P[x, ∂x].

Then we have

H∗ :=
N∑
k=0

(−1)k
(
(fX(x))′

fX(x)
+ ∂x

)k

σk(x)

(2.7)

=
N∑
k=0

 N∑
m=k

(−1)m
∑

j1+j2+k=m

m!

j1!j2!k!
(σm(x))(j1)

(fX(x))(j2)

fX(x)

 ∂k
x ,

and then H = H∗ (i.e., H is Hermitian) on Γ0
X if and only if N ∈ 2N

and, for all k ∈ {0, 1, ..., N}, it holds that

(2.8)
N∑

m=k

(−1)m
∑

j1+j2+k=m

m!

j1!j2!k!
(σm(x))(j1)

(fX(x))(j2)

fX(x)
= σk(x).



172 A. Ebang Ella and U. C. Ji

Proof. For the explicit proof, see [7].

In (2.8), by taking k = N − 1, we see that fX is a solution of the
following differential equation (see [5]):

(2.9) NσN (x)y′ + (N (σN (x))′ − 2σN−1(x))y = 0.

The equation (2.9) is sometimes called a Pearson equation (of type N)
associated with the Sturm Liouville operator LN .

By solving the Pearson equation (2.9), without considering the bound-
ary conditions (2.5), we find that the probability density function fX
associated with LN is given by

(2.10) fX(x) =
C

σN (x)
exp

{
2

N

∫ x σN−1(s)

σN (s)
ds

}
, ∀x ∈ (a, b),

where C is the normalization constant.
In the following examples we list two important examples of second

order Sturm Liouvile operator extensively studied by Accardi et al. [2].

Example 2.7. Suppose that fX is the probability density function
of a standard Gaussian random variable X given by

(2.11) fX(x) =
1√
2π

e−
x2

2 , ∀x ∈ R.

As shown in [2], the Sturm-Liouville operator associated with the stan-
dard Gaussian variable X and its eigenvalues (λn)n∈N0 are given by

(2.12) L2 = x∂x − ∂2
x, λn = n, ∀n ∈ N0.

Example 2.8. If fX is the probability density function of a gamma
random variable X given by

(2.13) fX(x) ≡ γα(x) =
1

Γ(α)
xα−1e−x, α > 0, ∀x ∈ (0,+∞),

then as shown in [2], the Sturm-Liouville operator associated with the
gamma variable X and its eigenvalues (λn)n∈N0 are given by

(2.14) L2,γα = (x− α)∂x − x∂2
x, λn = n, ∀n ∈ N0.

3. An Equivalence of Sturm Liouville operators

Let L2 be the second order Sturm Liouville operator, given as in
(2.12), associated with the standard Gaussian probability density func-
tion on R. Taking the square of L2, we have

(3.1) (L2)
2 = x (1 + x∂x) ∂x − x∂3

x − (2∂x + x∂2
x)∂x + ∂4

x.
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Moreover, denoting f the probability density function associated with
(L2)

2, we have, from (2.10), that

f(x) = C exp

{
2

4

∫ x

0
(−2s) ds

}
= Ce−

x2

2 ,

which is the probability density function of a standard Gaussian distri-
bution, given as in (2.11).

This observation, along with the identity given in (2.9), motivate the
following definition.

Definition 3.1. Let LM =

M∑
j=1

τj(x)∂
j
x and LN =

N∑
k=1

σk(x)∂
k
x be

two Sturm Liouville operators of orders M and N , respectively. We say
that LN and LM are equivalent in the sense of Pearson equation (or
simply, equivalent) if

PN = Q(x)PM or PM = Q(x)PN

for some non-zero real-valued polynomial Q, where

PNf(x) = NσN (x)f ′(x) + (NσN (x)′ − 2σN−1(x))f(x),

PMf(x) = MτM (x)f ′(x) + (MτM (x)′ − 2τM−1(x))f(x).

The following lemma generalizes the discussion mentioned at the be-
ginning of this section.

Lemma 3.2. Let LN be an N -th order Sturm Liouville operator.
Then, for any m ∈ N, (LN )m is equivalent to LN .

Proof. Let LN =
∑N

k=1 σk(x)∂
k
x be a N -th order Sturm Liouville

operator. The statement is trivial for m = 1. Now, let m ≥ 2 be an
integer. By applying the Leibniz rule, we obtain that

(LN )m =

 N∑
k1=0

σk1(x)∂
k1
x

 · · ·

 N∑
km=0

σkm(x)∂
km
x


=

N∑
k1=0

· · ·
N∑

km=0

σk1(x)∂
k1
x σk2(x)∂

k2
x · · · ∂km−1

x σkm(x)∂
km
x

=

N∑
k1=0

· · ·
N∑

km=0

k1∑
j1=0

· · ·
km−1+···+k1−j1−···−jm−2∑

jm−1=0(
k1
j1

)
· · ·
(
km−1 + · · ·+ k1 − j1 − · · · − jm−2

jm−1

)
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× σk1(x) (σk2(x))
(j1) · · · (σkm(x))

(jm−1)

× ∂km+km−1+···+k1−j1−···−jm−2−jm−1
x ,

from which we obtain that

• the order of (LN )m is obtained by taking the (2m− 1)-tuple

(k1, ..., km, j1, ..., jm−1) = (N, ..., N, 0, ..., 0),

i.e., (LN )m is a differential operator of order mN and (σN )m is
the coefficient polynomial associated with ∂mN

x .
• the coefficient polynomial associated with ∂mN−1

x is obtained by
taking the (2m− 1)-tuples (k1, ..., km, j1, ..., jm−1) with the values

(N − 1, ..., N, 0, ..., 0), · · · , (N, ..., N − 1, 0, ..., 0),

(N, ..., N, 1, ..., 0), · · · , (N, ..., N, 0, ..., 1).

Therefore, the polynomial coefficient associated with ∂mN−1
x is given by

mσN−1(x) (σN (x))m−1 +
m(m− 1)

2
N (σN (x))′ σN (x).

It follows that (LN )m can be re–written as follows:

(LN )m = A+R(x)∂mN−1
x + (σN (x))m ∂mN

x ,

where A is a differential operator of order at most mN − 2 and

R(x) := mσN−1(x) (σN (x))m−1 +
m(m− 1)

2
N (σN (x))′ σN (x).

Therefore, by applying (2.9)and constructing the Pearson equation as-
sociated with the Sturm Liouville operator (LN )m, it follows that

mN (σN (x))m y′ +
(
mN ((σN (x))m)′ − 2R(x)

)
y

= mN (σN (x))m y′ +
(
mN

(
m (σN (x))′ (σN (x))m−1

)
− 2R(x)

)
y

= m (σN (x))m−1 (NσN (x)y′ +
(
mN (σN (x))′

−2

(
σN−1(x) +

(m− 1)

2
N (σN (x))′

))
y

)
= m (σN (x))m−1 (NσN (x)y′ +

(
N (σN (x))′ − 2σN−1(x)

)
y
)
,

which means that (LN )m and LN are equivalent.

Notice that the Lemma 3.2 can be generalized as follows

Theorem 3.3. If LN is anN -th order Sturm Liouville operator, then,
for any real-valued polynomial P of degree m ≥ 1, P (LN ) and LN are
equivalent.



A notion of equivalence for Sturm-Liouville operators 175

Proof. Let LN be an N -th order Sturm Liouville operator given by

LN =

N∑
k=1

σk(x)∂
k
x , σN (x) ̸= 0,

where σk(x) is a real-valued polynomial of degree at most k ∈ {1, ..., N},
and let P (x) =

∑m
j=0 cjx

j be a real-valued polynomial of degree m ≥ 1,

that is, cm is non–zero. Then it is obvious that P (LN ) is a differential
operator of order mN and we have

P (LN ) =

m∑
k=0

cj

(
N∑
k=0

σk(x)∂
k
x

)j

=
m−1∑
k=0

cj

(
N∑
k=0

σk(x)∂
k
x

)j

+ cm

(
N∑
k=0

σk(x)∂
k
x

)m

.

Notice the follows:

•
∑m−1

k=0 cj

(∑N
k=0 σk(x)∂

k
x

)j
is a differential operator of order at

most (m− 1)N ,

• cm

(∑N
k=0 σk(x)∂

k
x

)m
is a differential operator of order mN (be-

cause cm ̸= 0).

Moreover, mN − 1 > (m − 1)N (because N ≥ 2) and the Pearson
equation of order mN , associated with P (LN ) is the Pearson equation
associated with cm(LN )m. By using Lemma 3.2, we can conclude P (LN )
is Pearson equivalent to LN .

Now, we may ask whether it is possible to find two equivalent Sturm
Liouville operators S and T such that their corresponding probability
density functions are different. The next example gives a positive answer
to this question.

Example 3.4. Let R > 0 be given. Consider the fourth order differ-
ential operator L4 given by

(3.2) L4 =

4∑
k=1

hk(x)∂
k
x ,

where

h1(x) = 2(R+ 1)x− 2R, h2(x) = x2 − 2(R+ 3)x,(3.3)

h3(x) = −2x(x− 2), h4(x) = x2.
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It is know from Section II.2 in [11] that L4, given as in (3.2), is a Sturm
Liouville operator associated with the so-called Laguerre–type orthogonal
polynomials, with eigenvalues (λn)n∈N0 given by

λn = n(n+ 2R+ 1), ∀n ∈ N0.

Now, on one hand, using (2.9), the Pearson equation associated with L4,
given as in (3.2), becomes

(3.4) 0 = 4x2y′ + (4(2x) + 2(2x2 − 4x))y = 4x2
(
y′ + y

)
.

On the other hand, consider the Sturm Liouville operator L2 ≡ L2,γ1 ,
given as in (2.14) (with α = 1), associated with probability distribution
γ1, , i.e.

(3.5) L2,γ1 = (x− 1)∂x − x∂2
x.

It follows, from (2.9), that the Pearson equation associated with L2,γ1 is
given by

(3.6) 0 = −2xy′ + (2(−1)− 2(x− 1))y = −2x(y + y′).

Moreover, from (3.4) and (3.6), we have

4x2
(
y′ + y

)
= −2x

(
−2x(y + y′)

)
, ∀x ∈ (0,+∞).

Therefore, L4 and L2,γ1 are equivalent in the sense of the Pearson equa-
tion.

Remark 3.5. In Example 3.4, even though the Sturm Liouville op-
erators L4 and L2,γ1 are equivalent, we should point out that the prob-
ability density function γ1, associated with L2,γ1 , is not associated with
L4. In fact, if γ1 were associated with L4, it would satisfy the equation

(3.7)

4∑
m=k

(−1)m
∑

j1+j2+k=m

m!

j1!j2!k!
(hm(x))(j1)

(γ1(x))
(j2)

γ1(x)
= hk(x)

for all k ∈ {1, 2, 3, 4}, where
γ1(x) = e−x, ∀x ∈ (0,∞)

Let us try to verify (3.7) for k = 2. In fact, using the definition of hk(x)
in (3.3), the left hand side of (3.7) becomes

4∑
m=2

(−1)m
∑

j1+j2=m−2

m!

j1!j2!2!
(hm(x))(j1)

(γ1(x))
(j2)

γ1(x)

=

4∑
m=2

(−1)m
∑

j1+j2=m−2

(−1)j2
m!

j1!j2!2!
(hm(x))(j1)
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=
∑

j1+j2=0

(−1)j2
2!

j1!j2!2!
(h2(x))

(j1) −
∑

j1+j2=1

(−1)j2
3!

j1!j2!2!
(h3(x))

(j1)

+
∑

j1+j2=2

(−1)j2
4!

j1!j2!2!
(h4(x))

(j1)

= h2(x)− 3
(
h3(x)

′ − h3(x)
)
+
(
h4(x) + h4(x)

′′ − 12h4(x)
′)

= x2 − 2(R+ 3)x− 3
{
2x2 − 8x+ 4

}
+
(
x2 + 2− 24x

)
= −4x2 − 2(R+ 3)x− 10,

which is not equal to h2(x), defined in (3.3). Therefore γ1 is not as-
sociated with L4 given as in (3.2). Moreover, there is no real-valued
polynomial P such that L4 = P (L2,γ1). In deed, suppose that there
exists a real-valued polynomial P such L4 = P (L2,γ1). Since L2,γ1 is
a second order Sturm-Liouville operator, P (x) must be of the form
P (x) = αx2 + βx, where α, β are reals. By (3.5) and direct compu-
tation, for any polynomial Q(x), we have

(L2,γ)
2Q(x) = (x− 1)Q′(x) + (x2 − 5x+ 2)Q

′′
(x)

− 2x(x− 2)Q(3)(x) + x2Q(4)(x).

Therefore, we obtain that

P (L2,γ) = α (L2,γ)
2 + β (L2,γ)(3.8)

= (x− 1)(α+ β)∂x + (αx2 − (5α+ β)x+ 2α)∂2
x

− 2xα(x− 2)∂3
x + ∂4

x.

Since P (L2,γ) = L4, it follows from (3.2), (3.3) and (3.8) that

2(R+ 1)x− 2R = (x− 1)(α+ β),

x2 − 2(R+ 3)x = αx2 − (5α+ β)x+ 2α,

−2x(x− 2) = −2xα(x− 2),

x2 = αx2,

which implies that α = 1 (from the last identity) and α = 0 (from the
second identity). This is a contradiction. Therefore, it is impossible to
construct a real-valued polynomial P , such that P (L2,γ1) = L4.

Remark 3.6. H. L. Krall proved in [9] that L4, given as in (3.2), is
self-adjoint with respect to the probability density function fX given by
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(see Example 2.2 in [10])

(3.9) fX(x) = C

[
1

R
δ(x) + e−xH(x)

]
, ∀x ∈ [0,+∞),

where δ is the Dirac distribution (also called Dirac delta function) and
H is the Heaviside function defined by

H(x) :=

{
1 if x ≥ 0,

0 if x < 0.

Notice that the probability density function fX , given as in (3.9), is not
differentiable in the classical sense, but it is differentiable in distribution
sense.

Proposition 3.7. Let LN be an N -th order Sturm Liouville operator
associated with a probability density function fX ∈ C∞(a, b). Then for
any real-valued polynomial P , P (LN ) is associated with fX .

Proof. Since L∗
N = LN with respect to fX , for any m ∈ N, it holds

that

[(LN )m]∗ = [(LN )∗]m = (LN )m.

This implies that for any real-valued polynomial P , P (LN )∗ = P (LN ).
Let (Φn)n∈N0 be the orthogonal system of monic orthogonal polynomials
with respect fX satisfying the eigenvalue problem given as in (2.6). Then
for any n ∈ N0, it follows from applying P (LN ) to (2.6) that

P (LN )Φn = P (λn)Φn.

Therefore, P (LN ) is a Sturm-Liuoville operator associated with fX .

Remark 3.8. Motivated by Proposition 3.7, some relations between
two Sturm Liouville operators which are associated with same probabil-
ity density function will be discussed in a separated paper.
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